
Digital Image Processing

Image Enhancement: 

Filtering in the Frequency Domain
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In this lecture we will look at image 

enhancement in the frequency domain

– Jean Baptiste Joseph Fourier

– The Fourier series & the Fourier transform

– Image Processing in the frequency domain

• Image smoothing

• Image sharpening

– Fast Fourier Transform
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Jean Baptiste Joseph Fourier

Fourier was born in Auxerre, 

France in 1768

– Most famous for his work “La 

Théorie Analitique de la 

Chaleur” published in 1822

– Translated into English in 1878: 

“The Analytic Theory of Heat”

Nobody paid much attention when the work 

was first published

One of the most important mathematical 

theories in modern engineering
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The Big Idea

=

Any function that periodically repeats itself can 

be expressed as a sum of sines and cosines of 

different frequencies each multiplied by a 

different coefficient – a Fourier seriesIm
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The Big Idea (cont…)

Notice how we get closer and closer to the 

original function as we add more and more 

frequencies
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http://www.tfh-berlin.de/~schwenk/hobby/fourier/Welcome.html


6

of

41
The Big Idea (cont…)

Frequency 

domain signal 

processing 

example in 

Excel
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The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform of f(x, y), for 

x = 0, 1, 2…M-1 and y = 0,1,2…N-1, 

denoted by F(u, v), is given by the equation:

for u = 0, 1, 2…M-1 and v = 0, 1, 2…N-1.











1

0

1

0

)//(2),(),(
M

x

N

y

NvyMuxjeyxfvuF 



8

of

41
DFT & Images

The DFT of a two dimensional image can be 

visualised by showing the spectrum of the 

images component frequencies
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Fourier Transform

• We start off by applying the Fourier Transform of 

• The magnitude calculated from the complex result is shown in
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The DC-value is by far the largest component of 

the image.
However, the dynamic range of the Fourier 

coefficients (i.e. the intensity values in the 

Fourier image) is too large to be displayed on 

the screen, therefore all other values appear as 

black. If we apply a logarithmic transformation to 

the image we obtain

The dynamic range of an image can be 

compressed by replacing each pixel value

with its logarithm. This has the effect that low 

intensity pixel values are enhanced. Applying 

a pixel logarithm operator to an image can be 

useful in applications where the dynamic 

range may too large to be displayed on a 

screen (or to be recorded on a film in the first 

place). 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/pixlog.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
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• The result shows that the image contains components of 

all frequencies,

• Their magnitude gets smaller for higher frequencies. 

Hence, low frequencies contain more image information 

than the higher ones. 

• The transform image also tells us that there are two 

dominating directions in the Fourier image, one passing 

vertically and one horizontally through the center. 

• These originate from the regular patterns

in the background of the original image. 
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DFT & Images (cont…)

Features from an image can even 

sometimes be seen in the Fourier spectrum 

of the image
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Scanning electron microscope 

image of an integrated circuit 

magnified ~2500 times

Fourier spectrum of the image
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The Inverse DFT

It is really important to note that the Fourier 

transform is completely reversible

The inverse DFT is given by:

for x = 0, 1, 2…M-1 and y = 0, 1, 2…N-1
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The DFT and Image Processing

To filter an image in the frequency domain:

1. Compute F(u,v) the DFT of the image

2. Multiply F(u,v) by a filter function H(u,v)

3. Compute the inverse DFT of the result

Im
a

g
e

s
 t
a

k
e

n
 f
ro

m
 G

o
n

z
a

le
z
 &

 W
o
o
d

s
, 
D

ig
it
a

l 
Im

a
g
e

 P
ro

c
e

s
s
in

g
 (

2
0

0
2

)



15

of

41
Some Basic Frequency Domain Filters
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Smoothing Frequency Domain Filters

Smoothing is achieved in the frequency 

domain by dropping out the high frequency 

components

The basic model for filtering is:

G(u,v) = H(u,v)F(u,v)

where F(u,v) is the Fourier transform of the 

image being filtered and H(u,v) is the filter 

transform function

Low pass filters – only pass the low 

frequencies, drop the high ones
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Ideal Low Pass Filter

Simply cut off all high frequency components 

that are a specified distance D0 from the 

origin of the transform

changing the distance changes the behaviour 

of the filterIm
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Ideal Low Pass Filter (cont…)

The transfer function for the ideal low pass 

filter can be given as:

where D(u,v) is given as:
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Ideal Low Pass Filter (cont…)

Above we show an image, it’s Fourier 

spectrum and a series of ideal low pass 

filters of radius 5, 15, 30, 80 and 230 

superimposed on top of it
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Ideal Low Pass Filter (cont…)
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image

Result of filtering 

with ideal low 

pass filter of 

radius 5

Result of filtering 

with ideal low 

pass filter of 

radius 30

Result of filtering 

with ideal low 

pass filter of 

radius 230

Result of filtering 

with ideal low 

pass filter of 

radius 80

Result of filtering 

with ideal low 

pass filter of 

radius 15
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Butterworth Lowpass Filters

The transfer function of a Butterworth 

lowpass filter of order n with cutoff frequency 

at distance D0 from the origin is defined as:
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Butterworth Lowpass Filter (cont…)
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Original

image

Result of filtering 

with Butterworth 

filter of order 2 and 

cutoff radius 5

Result of filtering 

with Butterworth 

filter of order 2 and 

cutoff radius 30

Result of filtering 

with Butterworth 

filter of order 2 and 

cutoff radius 230

Result of filtering 

with Butterworth 

filter of order 2 and 

cutoff radius 80

Result of filtering 

with Butterworth 

filter of order 2 and 

cutoff radius 15
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Gaussian Lowpass Filters

The transfer function of a Gaussian lowpass 

filter is defined as:
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Gaussian Lowpass Filters (cont…)
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Original

image

Result of filtering 

with Gaussian 

filter with cutoff 

radius 5

Result of filtering 

with Gaussian 

filter with cutoff 

radius 30

Result of filtering 

with Gaussian 

filter with cutoff 

radius 230

Result of 

filtering with 

Gaussian filter 

with cutoff 

radius 85

Result of filtering 

with Gaussian 

filter with cutoff 

radius 15
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Lowpass Filters Compared 

Result of filtering 

with ideal low 

pass filter of 

radius 15

Result of 

filtering with 

Butterworth filter 

of order 2 and 

cutoff radius 15

Result of filtering 

with Gaussian 

filter with cutoff 

radius 15
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Lowpass Filtering Examples

Poor resolution

For the broken char. The human visual 

system can fill these gaps, but the M/C is not

A low pass Gaussian filter is used to connect 

broken text(blurring)
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Lowpass Filtering Examples 

cosmetic  Application

Different lowpass Gaussian filters used to 

remove blemishes in a photograph

Im
a

g
e

s
 t
a

k
e

n
 f
ro

m
 G

o
n

z
a

le
z
 &

 W
o
o
d

s
, 
D

ig
it
a

l 
Im

a
g
e

 P
ro

c
e

s
s
in

g
 (

2
0

0
2

)



28

of

41
Lowpass Filtering Examples (cont…)

Original 

image

Gaussian 

lowpass filter

Processed 

image

Spectrum of 

original image
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Sharpening in the Frequency Domain

Edges and fine detail in images are 

associated with high frequency components

High pass filters – only pass the high 

frequencies, drop the low ones

High pass frequencies are precisely the 

reverse of low pass filters, so:

HHP(u, v) = 1 – HLp(u, v)
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Sharpening Frequency Domain 

Filter: 

Ideal highpass filter

Butterworth highpass filter

Gaussian highpass filter
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31

Spatial representation of Ideal, Butterworth 

and Gaussian highpass filters
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Ideal High Pass Filters

The ideal high pass filter is given as:

where D0 is the cut off distance as before
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Ideal High Pass Filters (cont…)

Results of ideal 

high pass filtering 

with D0 = 15

Results of ideal 

high pass filtering 

with D0 = 30

Results of ideal 

high pass filtering 

with D0 = 80
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Butterworth High Pass Filters

The Butterworth high pass filter is given as:

where n is the order and D0 is the cut off 

distance as before
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Butterworth High Pass Filters (cont…)

Results of 

Butterworth 

high pass 

filtering of 

order 2 with 

D0 = 15

Results of 

Butterworth 

high pass 

filtering of 

order 2 with 

D0 = 80

Results of Butterworth high pass 

filtering of order 2 with D0 = 30
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Gaussian High Pass Filters

The Gaussian high pass filter is given as:

where D0 is the cut off distance as before
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Gaussian High Pass Filters (cont…)

Results of 

Gaussian 

high pass 

filtering with 

D0 = 15

Results of 

Gaussian 

high pass 

filtering with 

D0 = 80

Results of Gaussian high 

pass filtering with D0 = 30
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Highpass Filter Comparison

Results of ideal 

high pass filtering 

with D0 = 15

Results of Gaussian 

high pass filtering with 

D0 = 15

Results of Butterworth 

high pass filtering of 

order 2 with D0 = 15
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